
Supplementary Information 3:
Antirrhinum Hybrid Zone Data
In the main text we apply our method to a data set from a hybrid zone between
two sub-species of the model plant Antirrhinum majus. In the following, we
describe sampling, genotyping and filtering criteria we used for selecting data
for our analysis.

Sampling and Data Collection
As part of a long-term project examining wild pedigrees and geographic clines,
each year from 2009 to 2014 we sampled plants from a hybrid zone between
Antirrhinum majus pseudomajus and Antirrhinum majus striatum in the Spanish
Pyrenees located in val di Ribes near the village of Planoles. Individual plants
are primarily found within 100 m either side of two roughly parallel roads that
run up the valley (Fig. 10). The sampling concentrated on a ≈ 4 km transect
encompassing the center of the phenotypic and genetic clines involved in magenta
and yellow flower pigmentation (ROSEA; Whibley et al. (2006), and SULFUREA;
Bradley et al. (2017), respectively).

The following data were obtained for each plant:

• A global positioning system (GPS) coordinate
• Leaf material (for DNA extraction)

The collection occurred between May and July, for individuals with open
flowers only. Individual’s geographic coordinate was collected using a GPS device
(Trimble GeoXT datalogger) with a mean accuracy of ≈ 2 m. Four to six fresh
leaves from each plant were stored in individual glassine envelope bags, which
were placed within a plastic bag containing silica gel (Fisher Scientific) for drying
the leaf tissue. Components of the magenta and yellow color of the flowers were
scored in the field according to Whibley et al. (2006).

SNP Genotyping
The KASP genotyping platform (LGC genomics) was used to genotype single
nucleotide polymorphisms (SNPs) across the Antirrhinum genome. In total, we
designed ≈ 240 SNP at a subset of polymorphic and divergent loci, but here
report just on a subset of 60 polymorphic loci. The remaining markers that
clearly violate our model assumptions have been filtered out (see below).

Candidate loci were identified using a draft A. majus reference genome (≈ 630
Mb across eight linkage groups; courtesy of Yongbiao Xue, BGI) and allele fre-
quencies obtained from whole-genome Illumina PoolSeq of six pools of n = 50 indi-
viduals located along a transect through the hybrid zone (unpublished data). All
potential SNP loci were identified across the genome with a custom Python script
SNPextract.py (https://github.com/dfield007/genomics_general) which
identified SNPs positions suitable for KASP genotyping platform (LGC Ge-
nomics). The script was run with the following parameters: (i) 30 < depth <
300 in all pools at the focal SNP (to reduce the probability of false positives and
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paralogs), (ii) 30 < depth < 300 for sequences 50bp upstream and downstream
of focal SNP, (iii) <3 other SNPs within 50bp (to ensure primer efficiency), and
(iv) biallelism (a KASP requirement). We also selected loci on the basis of being
polymorphic in the hybrid zone (0.3 < p̄ < 0.7) and selected one locus randomly
every couple of mapping units (cM) to maximize marker independence (Figure
S1). For each candidate, the script extracted the 100bp sequence surrounding
each candidate polymorphic site required to design the SNP primers. DNA
extractions and SNP genotyping were carried out by LGC Genomics. Replicate
DNA extractions and genotyping confirmed relatively low error rates of the
KASP platform (mean error rate < 0.1% per locus).
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Figure S1: Position of KASP SNPs used in our analysis on draft Antirrhinum
majus linkage map. Positions of 56 loci (black lines) indicated, the remaining 4
SNP loci could not be placed on the linkage map.
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Data Filtering
Our method requires all individuals to have no missing genotype data. Starting
with n = 13722 individuals in the core hybrid zone (≈ ±2km around flower color
transition), we first removed individuals with more than 8 missing genotypes
(n = 246). Next, we identified individuals with at most one genotype mismatch,
and deleted duplicate individuals (n = 1087) to remove intentionally or non-
intentionally regenotyped plants. For the remaining data (n = 12389), we
imputed missing genotypes. For this, we first calculated the mean allele frequency
per marker averaged over all individuals; and then binomially draw two alleles
for missing genotypes at random with the corresponding calculated mean allele
frequency. As only a fraction 0.84% of all genotypes had to be inputed, this step
does not significantly affect the results of the inference method.

Before applying our method, we filtered markers based on the following 4
criteria:

1. Geographical Variation: We removed markers that were correlated to
the x or the y coordinate, as such large scale variations could originate
from deeper time scales or be the traces of divergent selection or could
also be the remnants of secondary contact. We chose a cut-off value of
R2 = 0.015.

2. Linkage Disequilibrium: We further filtered markers with strong link-
age disequilibrium, because our method assumes that different markers
contain independent information. We iteratively pruned markers that were
correlated more than R2 = 0.03 with any other marker.

3. Minor Allele Frequency: We removed all markers with a minor allele
frequency below p̄ = 0.15, as rare markers can have a dominating influence
on pairwise measures of relatedness, but here we aim to base inference
on the independent information of many markers. Most markers in our
dataset have intermediate allele frequency near p = 0.5, and the overall
allele frequency distribution is relatively narrow (Fig. S2) .

4. Deviations from Hardy-Weinberg Equilibrium: We tested for a sig-
nificant deficit or surplus of heterozygous from random mating expectations.
These deviations can have multiple reasons, for instance failed genotyping,
strong geographic structure or non-random mating. For filtering, we first
calculated local allele frequency estimates by weighting all other individuals
with a two-dimensional symmetric Gaussian. After testing the fit of several
standard deviations σ, we found that σ = 500 meters gave the best predic-
tions for local allele frequencies. We first calculated this expected mean
allele-frequency for every marker and every individual with this Gaussian.
Based on these local frequencies, we then obtained the expect number of
heterozygous and homozygous sites for each marker. Using a χ2-test, we
calculated p-values for deviations from the expected numbers. We then
filtered markers that had a p̄-value below a cutoff of 10−5.

After filtering, we were left with a dataset of n = 12389 individuals and 60
SNP markers. To ensure that there is no bias towards low or high frequencies,
we flipped the 0 and 1 state for every marker with probability 0.5.
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Figure S2: Allele frequency distribution. This figure depicts the distribution of
the mean allele frequencies of the 60 markers (standard deviation 0.117). Left:
Mean allele frequency ordered by marker. Right: Histogram of mean allele
frequencies.

Data Availability
The detailed oligo-sequences for SNP genotyping, filtered genotype and geo-
graphic data are available at https://github.com/hringbauer/BarrierInfer/
tree/master/DataHZ. The Python scripts used for data filtering are freely
accessible at https://github.com/hringbauer/BarrierInfer/tree/master/
SNPCleaningScripts.

Heterogeneity of Isolation by Distance
Our method assumes a uniform isolation by distance pattern in two dimensions.
To confirm that this is not grossly violated for the Antirrhinum data, we calcu-
lated IBD patterns and investigated them for heterogeneity, both with respect to
absolute position and angle (Fig. S3). Our analysis indicates that there are some
spatial fluctuations of isolation by distance. However, they are mostly within
the uncertainty estimates obtained by bootstrapping over genetic markers; so
there is no indication of gross violations of the model assumptions.

Power Simulation
To test whether our method has sufficient power to detect a strong barrier to
gene flow, we simulated a dataset similar to the Antirrhinum dataset. We used
the same simulation engine described in the main text. We used 60 markers with
a standard deviation σ(p̄) = 0.117355, as in the filtered hybrid zone data set.
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Figure S3: Heterogeneity of isolation by distance estimates. As a test statistic
for the chance of recent co-ancestry F we used (p1−p̄)(p2−p̄)

4 . This statistic should
be a good estimator for F for intermediate mean allele frequencies (p̄ ≈ 0.5). In
the figures we depict the excess deviation compared to the average over all pairs.
Left: Spatial heterogeneity and 25 bootstraps over loci: We depict mean excess
F for all pairs with distance less than 200 meters. Right: Excess F when pairs
are binned into 16 angular bins and three distance bins (20 − 100, 100 − 400,
400 − 2000 meter).

We simulated a population of a 60 × 40 demes one dispersal unit apart, with 16
diploid individuals per deme (thus Nbh=201.06). We sampled one individual
per deme, and simulated a strong barrier to gene flow (γ = 0.02). This synthetic
dataset has a similar isolation by distance pattern as the hybrid zone data set
(see Fig. S4). Running our inference scheme on this dataset of 2400 samples
indicates that there is sufficient power to infer the presence of a strong barrier
(Fig. S5). At the true position of the barrier, the fit as well as 20 bootstraps over
markers estimate a strong barrier to gene flow. For most other putative locations,
no strong barrier is estimated. There is variation of bootstrap estimates which
indicates that power is limited, but in total only a small number of bootstrap
fits estimates a strong barrier. We stress that these power simulations are done
for an idealized scenario in which our model assumptions hold.
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Figure S4: IBD of data simulated with hybrid zone parameters. The plot
shows pairwise homozygosity for pairwise distance bins. The small difference
in absolute values is due to the randomness with which mean allele frequencies
for the synthetic data set were drawn. Left: Hybrid zone data (fit: Nbh =
192.20,m = 0.00839, s = 0.528088). Right: Synthetic data set (fit: Nbh =
150.6,m = 0.0056, s = 0.52735), pairwise distance is measured in standard
deviations σ of the dispersal kernel.



Figure S5: Power of inference scheme on simulated data set. Black dots indicate
best fit estimates, colored dots are estimates after bootstrapping over genetic
markers. Marker number, mean allele frequency distribution and demographic
parameters were chosen to approximate the parameters from the Antirrhinum
hybrid zone. We simulated a strong barrier (γ = 0.02), and run the inference
scheme for multiple putative barrier locations (indicated by black lines).


